Calculation Policy

St Agnes C of E Primary School

Approved by: Mr Chris Cartwright Date:
Last reviewed October 2022
on:

Next review due September 2023
by:

Calculation Policy

Mission Statement

St Agnes C of E Voluntary Aided Primary School is proud to offer to its pupils an education, which is intellectually, socially, morally, aesthetically, physically and spiritually based on Christian values. We encourage each child to develop a sense of curiosity and excitement about the world, ensuring that the curriculum provides a Christian setting in which children can grow in understanding and the acquisition of skills, attitudes and values.

All members of our School, pupils, teaching staff and non-teaching staff are to be valued and treated with mutual respect, thus promoting a healthy self-esteem.

Our School seeks to create strong links between school, home, Church and parish, providing pupils with the necessary preparation for their entry into the wider community.

We expect everyone at St Agnes Primary School to follow 'The Great Expectations' -
Be Safe
Be in the right place at the right time
Do your best
Handle your emotions
Use appropriate language
Cooperate
Respect everyone and everything

comele		Pictorial Use five and ten frames to reeresent key number bonds.	Abstract $\begin{array}{l}\text { Use a part-whole model alongside other } \\ \text { representations to find number bonds. Make } \\ \text { sure to include examples where one of the }\end{array}$	EYFS
		0000		
			$\bullet \cdot 0$	D
		0000	(3)	?
				F
				\bigcirc
		\%omo		\checkmark
		5		

Objective \& Strategy	Concrete	Pictorial	Abstract	
Combining two parts to make a whole: part- whole model	Use part part whole model. Use cubes to add two numbers together as a group or in a bar.	3 Balls 2 Balls Use pictures to add two numbers together as a group or in a bar.	$4+3=7$ Use the part-part $10=6+4$ whole diagram as shown above to move into the abstract.	Cl
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.	
Regrouping to make 10. This is an essential skill for column addition later.		$3+9=$ Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10. $9+5=14$ 14	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?	
Represent \& use number bonds and related subtraction facts within 20	2 more than 5 .		Emphasis should be on the language ' 1 more than 5 is equal to 6 .' ' 2 more than 5 is 7. ' ' 8 is 3 more than 5.'	

Objective \＆ Strategy	Concrete	Pictorial	Abstract	12							
Adding multiples of ten	Model using dienes and bead strings	Use representations for base ten．	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$	＋							
Use known number facts Part part whole	Children ex－ plore ways of making num－ bers within 20	$\begin{gathered} 20-\square \\ \square+\square=20 \quad 20-\square=\square \\ \square+\square=20 \quad 20-\square=\square \end{gathered}$	\square $+1=16$ $16-1=$ \square $1+$ \square $=16$ 16 \square $\square=1$								
Using known facts	$\begin{aligned} & \square_{\square} \square+\square_{\square}=\square_{\square} \square_{\square} \square^{\square} \\ & \square \square \square+\square \square \square=\square \square \square \square \square \square \square \square \end{aligned}$	$\begin{aligned} \because+\therefore & =\therefore \\ \\|\mid+\\| \\| & =\\| \\|\\| \\| \\ \text { ロロ }+ \text { 昌品 } & =\text { 昭吅 } \end{aligned}$ Children draw representations of H, T and O	$3+4=7$ leads to $30+40=70$ leads to $300+400=700$								
Bar model	$3+4=7$	$7+3=10$	23 25 $?$ $23+25=48$								

Objective \& Strategy	Concrete	Pictorial	Abstract	
Add a two digit number and ones	$17+5=22$ Useten frame to make 'magic ten Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$		$17+5=22$ Explore related facts $17+5=22$ $5+17=22$ $22-17=5$ $22-5=17$	
Add a 2 digit number and tens	$25+10=35$ Explore that the ones digit does not change		$\left\lvert\, \begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}\right.$	
Add two 2-digit numbers	昰 Model using dienes, place value counters and numicon.	Use number line and bridge ten using part whole if necessary.	$\begin{gathered} 25+47 \\ 20+5 \\ 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$	
Add three 1-digit numbers	Combine to make 10 first if possible, or bridge 10 then add third digit	$b^{8} b^{3}+\operatorname{bib}^{3} b^{3}+\operatorname{bib}^{8} b^{8}$ Regroup and draw representation.	$\begin{aligned} 4+7+6 & =10+7 \\ 10 & =17 \end{aligned}$ Combine the two numbers that make/ bridge ten then add on the third.	

Objective \& Strategy	Concrete	Pictorial	Abstract	
Column Addition no regrouping (friendly numbers)		Children move to drawing the counters using a tens and one frame.	$\begin{array}{r} 223 \\ +114 \\ \hline \end{array}$	$1>$
Add two or three 2 or 3- digit numbers.	Add together the ones first, then the tens.			
	Move to using place value counters		Add the ones first, then the tens, then the hundreds.	
Column Addition with regrouping.	Exchange ten ones for a ten. Model using numicon and pv counters.	 Children can draw a representation of the grid to further support their understanding, carrying the ten underneath the line	$\begin{aligned} & \begin{array}{l} 20+5 \\ 40+8 \end{array} \\ & \hline 60+13=73 \\ & \begin{array}{l} \text { Start by partitioning } \\ \text { the numbers before } \\ \text { formal column to } \\ \text { show the exchange. } \end{array} \\ & \hline \frac{536}{621} \end{aligned}$	

Objective \& Strategy	Concrete	Pictorial	Abstract	
Represent and use number bonds and related subtraction facts within 20 Part Part Whole model	Link to addition. Use PPW model to model the inverse. If 10 is the whole and 6 is one of the arts, what s the other part? $10-6=4$	Use pictorial representations to show the part.	Move to using numbers within the part whole model.	
Make 10	$14-9$ Make 14 on the ten frame. Take 4 away to make ten, then take one more away so that you have taken 5 .	Jump back 3 first, then another 4 . Use ten as the stopping point.	$16-8$ How many do we take off first to get to 10? How many left to take off?	
Bar model	$5-2=3$		8 2$\begin{aligned} & 10=8+2 \\ & 10=2+8 \\ & 10-2=8 \\ & 10-8=2 \end{aligned}$	

Objective \& Strategy	Concrete	Pictorial	Abstract	
Column subtraction without regrouping (friendly numbers)	Use base 10 or Numicon to model	 Darw representations to support understanding	$\begin{gathered} 47-24=23 \\ -\frac{40+7}{20+4} \\ \hline 20+3 \\ \hline \end{gathered}$ Intermediate step may be needed to lead to clear subtraction understanding.	
Column subtraction with regrouping	Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into tten ones. Use the phrase 'take and make' for exchange.	Children may draw base ten or PV counters and cross off.		

Objective \& Strategy	Concrete	Pictorial	Abstract	$Y \Delta-6$
Subtractingtens and ones Year 4 subtract with	フ2ィ-170	Children to draw pv counters and show their exchange-see Y3	$\begin{array}{r} 2 x^{\prime} 54 \\ -1562 \\ \hline \end{array}$	
up to 4 digits. Introduce decimal subtraction through context of money	Model process of exchange using Numicon, base ten and then move to PV counters.		Use the phrase 'take and make' for exchange	
Year 5-Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal	As Year 4	Children to draw pv counters and show their exchange-see Y3	Use zeros for placeholders $\begin{array}{r} 67^{10} x^{1} 69 \cdot 0 \\ -\quad 372 \cdot 5 \\ \hline 6796 \cdot 5 \end{array}$	
Year 6-Subtract with increasingly large and more complex numbers and decimal values.				

Objective \& Strategy	Concrete	Pictorial	Abstract	
Doubling	Use practical activities using manipultives including cubes and Numicon to demonstrate doubling	Draw pictures to show how to double numbers Double 4 is 8	Partition a number and then double each part before recombining it back together.	
Counting in multiples	Count the groups as children are skip counting, children may use their fingers as they are skip counting.	Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$	
Making equal groups and counting the total	Use manipulatives to create equal groups.	Draw to show $2 \times 3=6$ Draw and make representations	$2 \times 4=8$	

Objective \& Strategy	Concrete	Pictorial	Abstract	
Division as sharing Use Gordon ITPs for modelling		Children use pictures or shapes to share quantities.	12 shared between 3 is 4	
	I have 10 cubes, can you share them equally in 2 groups?	Sharing: 4 12 shared between 3 is 4		

|
 Strategy |
| :--- | :--- | :--- |
| Division with |
| remainders. |

Long Division	
Step 1- continued. $\begin{array}{r} h t o \\ 061 \\ 4 \longdiv { 2 4 7 } \\ \frac{-4}{3} \end{array}$ When dividing the ones, 4 goes into 7 one time. Multiply $1 \times 4=4$, write that four under the 7 , and subract. This finds us the remainder of 3 . Check: $4 \times 61+3=247$ $\begin{array}{r} \text { th hto } \\ 0402 \\ 4 \begin{array}{r} 1609 \\ \frac{-8}{1} \end{array} \end{array}$ When dividing the ones, 4 goes into 9 two times. Multiply $2 \times 4=8$, write that eight under the 9 , and subract. This finds us the remainder of 1 . Check: $4 \times 402+1=1,609$	

Long Division

Step 2-A remainder in any of the place values.

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{aligned} & { }^{h t o} \\ & 2 \longdiv { 1 } \\ & 2 \longdiv { 2 7 8 } \end{aligned}$ Two goes into 2 one time, or 2 hundreds $\div 2=1$ hundred.	$\begin{gathered} h^{h t o} \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{0} \end{gathered}$ Multiply $1 \times 2=2$, write that 2 under the two, and subtract to find the remainder of zero.	$\begin{gathered} h t \circ \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{0} \frac{1}{7} \end{gathered}$ Next, drop down the 7 of the tens next to the zero.
Divide.	Multiply \& subtract.	Drop down the next digit.
$\begin{aligned} & \quad h t o \\ & 13 \\ & 2 \longdiv { 2 7 8 } \\ & -\frac{2}{07} \end{aligned}$ Divide 2 into 7. Place 3 into the quotient.	$\begin{gathered} h t o \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{27} \\ -\quad 6 \\ \hline 1 \end{gathered}$ Multiply $3 \times 2=6$, write that 6 under the 7 , and subtract to find the remainder of 1 ten.	$\begin{aligned} & h t \circ \\ & 13 \\ & 2 \longdiv { 2 7 8 } \\ & \frac{-2}{07} \\ & -\quad 6 \\ & \hline 18 \end{aligned}$ Next, drop down the 8 of the ones next to the 1 leftover ten.
1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{gathered} h t o \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 18 \end{gathered}$ Divide 2 into 18 . Place 9 into the quotient.	$\begin{aligned} & h t o \\ & 139 \\ & 2 \longdiv { 2 7 8 } \\ & \frac{-2}{07} \\ & -\quad 6 \\ & \hline 18 \\ & -18 \\ & \hline 0 \end{aligned}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract to find the remainder of zero.	$\begin{aligned} & h t \circ \\ & 2 \longdiv { 1 3 9 } \\ & \frac{-2}{278} \\ & -\quad 6 \\ & -18 \\ & -18 \\ & \hline 0 \end{aligned}$ There are no more digits to drop down. The quotient is 139 .

\%MathsHUBS

This policy has been largely adapted from the White Rose Maths Hub Calculation Policy with further material added by Cliffe VC Primary School. It is a working document and will be revised and amended as necessary.

Data Protection Statement

The procedures and practice created by this policy have been reviewed in the light of our Data Protection Policy.

All data will be handled in accordance with the school's Data Protection Policy.

Data Audit For This Policy					
What ?	Probable Content	Why ?	Who ?	Where ?	When ?
Child's Name	Name	Log-in Information	All Staff (Where Necessary) Parents Children	Kept in children's file or shredded.	Kept in children's file or sent home.

As such, our assessment is that this policy :

Has Few / No Data Compliance Requirements	Has A Moderate Level of Data Compliance Requirements	Has a High Level Of Data Compliance Requirements
\checkmark		

